
Programming Fundamentals 2

Pierre Talbot

11 March 2021

University of Luxembourg



Chapter IV. Ad-hoc Polymorphism

0



Polymorphism

• Fundamental concept in computer science.

• It means that “something can exist in different forms”.

• A same type can have different behaviors.

Different kind of polymorphisms

• Ad-hoc polymorphism.

• Subtyping polymorphisme (through inheritance).

• Casting polymorphisme.

• Parametric polymorphism (through generics).

1



Polymorphism

• Fundamental concept in computer science.

• It means that “something can exist in different forms”.

• A same type can have different behaviors.

Different kind of polymorphisms

• Ad-hoc polymorphism.

• Subtyping polymorphisme (through inheritance).

• Casting polymorphisme.

• Parametric polymorphism (through generics).

1



Compile-time and runtime types

1



Compile-time type

Compile-time type

• The type is associated to the variable during the compilation.

• It is the type written when declaring a variable, e.g., Integer i.

• Variables with primitive types can only have compile-time type.

2



Exercise: compile-time type

class WeaponStore{

Weapon cheater = new Weapon(100);

Weapon axe = new Axe();

Weapon hammer = new Hammer();

int number_weapons = 3;

Number extra_damage = new Integer(42);

public int price(Weapon w) { /∗ ... ∗/ }

}

//... In main function.

WeaponStore store = new WeaponStore();

store.price(new Axe());

store.price(new Weapon(22));

3



Solution: compile-time type

class WeaponStore{

Weapon cheater = new Weapon(100); // Weapon

Weapon axe = new Axe(); // Weapon

Weapon hammer = new Hammer(); // Weapon

int number_weapons = 3; // int

Number extra_damage = new Integer(42); // Number

// The compile-time type of w is Weapon

public int price(Weapon w) { /∗ ... ∗/ }

}

//... In main function.

WeaponStore store = new WeaponStore(); // WeaponStore

store.price(new Axe()); // the temporary variable has type Axe.

store.price(new Weapon(22)); // temporary has type Weapon.

4



Runtime type

Runtime type

• The “real type” of the variable, as initialized at runtime.

• The runtime type (c1) is always a subclass or identical (c1 ≤ c2) to

the compile-time type (c2).

• For instance, Axe axe = new Weapon(39); does not make sense. A weapon

is not an axe, a weapon can be many other things.

• Moreover, technically, how would we initialize the remaining

members of Axe?

5



Example: runtime types

class WeaponStore{

Weapon cheater = new Weapon(100);

Weapon axe = new Axe();

Weapon hammer = new Hammer();

int number_weapons = 3;

Number extra_damage = new Integer(42);

public int price(Weapon w) { /∗ ... ∗/ }

}

//... In main function.

WeaponStore store = new WeaponStore();

store.price(new Axe());

store.price(new Weapon(22));

6



Solution: runtime types

class WeaponStore{

Weapon cheater = new Weapon(100); // Weapon

Weapon axe = new Axe(); // Axe

Weapon hammer = new Hammer(); // Hammer

int number_weapons = 3; // int

Number extra_damage = new Integer(42); // Integer

// The dynamic type of w can be

// Weapon, Axe or Hammer.

public int price(Weapon w) { /∗ ... ∗/ }

}

//... In main function.

WeaponStore store = new WeaponStore(); // WeaponStore

store.price(new Axe()); // the temporary variable has type Axe.

store.price(new Weapon(22)); // temporary has type Weapon.

7



Ad-hoc Polymorphism

7



Ad-hoc polymorphism (overloading)

Introductory challenge

• Create a class Monster and Obstacle each having a health points

attribute and a method to decrease these health points.

• Add two methods to Axe and Hammer to attack the monsters and

obstacles.

• The dammage of the axe on monsters is weigthed by 0.8, and on

obstacles by 1.2.

• For the hammer, we have 1.4 and 0.7.

8



Thoughts on method names

Did you call the method to decrease the health points set_life or

similarly?

Coding style

• Methods such as set_* and get_* are bad names because they lead to

imperative-style code, and not the “service-oriented” approach of

OO.

• They somewhat break encapsulation because they expose internal

attributes.

• A method should give a service, it must show in the name.

• It’s hard to find good names, but very important.

• Sometimes, we want to have records (and not objects), in which

case you can use immutable records or PODS and POJO,

http://en.wikipedia.org/wiki/Plain_old_data_structure).

9

http://en.wikipedia.org/wiki/Plain_old_data_structure


Thoughts on method names

Did you call the method to decrease the health points set_life or

similarly?

Coding style

• Methods such as set_* and get_* are bad names because they lead to

imperative-style code, and not the “service-oriented” approach of

OO.

• They somewhat break encapsulation because they expose internal

attributes.

• A method should give a service, it must show in the name.

• It’s hard to find good names, but very important.

• Sometimes, we want to have records (and not objects), in which

case you can use immutable records or PODS and POJO,

http://en.wikipedia.org/wiki/Plain_old_data_structure).

9

http://en.wikipedia.org/wiki/Plain_old_data_structure


First solution

class Monster {

private double life = 100;

public void hit_me(double damage) { life = Math.max(0, life - damage); }

}

class Obstacle { /∗ similar ∗/ }

class Axe {

static final double MONSTER_DAMAGE_RATIO = 0.8;

static final double OBSTACLE_DAMAGE_RATIO = 1.2;

public void attack_monster(Monster m) {

m.hit_me(damage * MONSTER_DAMAGE_RATIO);

}

public void attack_obstacle(Obstacle o) {

o.hit_me(damage * OBSTACLE_DAMAGE_RATIO);

}

}

class Hammer { /∗ similar ∗/ }

10



Observation

public void attack_monster(Monster m)

Anything wrong with this method?

Coding style

You should avoid any repetition, in the code, but also in the names.

This method signature already indicates we attack a monster, no need

to repeat it.

11



Observation

public void attack_monster(Monster m)

Anything wrong with this method?

Coding style

You should avoid any repetition, in the code, but also in the names.

This method signature already indicates we attack a monster, no need

to repeat it.

11



Second solution

class Monster {

private double life = 100;

public void hit_me(double damage) { life = Math.max(0, life - damage); }

}

class Obstacle { /∗ similar ∗/ }

class Axe {

static final double MONSTER_DAMAGE_RATIO = 0.8;

static final double OBSTACLE_DAMAGE_RATIO = 1.2;

public void attack(Monster m) {

m.hit_me(damage * MONSTER_DAMAGE_RATIO);

}

public void attack(Obstacle o) {

o.hit_me(damage * OBSTACLE_DAMAGE_RATIO);

}

}

class Hammer { /∗ similar (constants change) ∗/ }

12



Overloading

Definition

Overloading is a compile-time mechanism allowing us to use a same

name for multiple methods, when those have a similar role.

Compile-time

It is only based on the compile-time type, the runtime type plays no

role, and the method calls are resolved at compile-time (aka. static

binding).

13



Overloading

Definition

Overloading is a compile-time mechanism allowing us to use a same

name for multiple methods, when those have a similar role.

Compile-time

It is only based on the compile-time type, the runtime type plays no

role, and the method calls are resolved at compile-time (aka. static

binding).

13



Overloading

When calling obj.method(a1, ..., an), how to be sure of which

methods will be selected at compile-time? (trivial steps in grey).

1. Identify the classes to explore (compile-time type of obj + super

classes).

2. Locate the accessible methods (public or protected in super classes)

with the same name.

3. Select the methods with the same arity (numbers of arguments).

4. Select the applicable methods, i.e., those with types of ai are ≤ Ti ,

Ti being the type of the parameter.

5. Apply an algorithm to select the most specific method.

Note: The return type does not matter.

14



Overloading resolution algorithm

This algorithm can be different depending on the language. Even

between different versions of a same language (Java 1.2 vs Java 1.5 or

later). Here, we present the most recent for Java.

1. Let Ai be the types of arguments, and Pi the types of the

parameters.

2. For each argument, compute the “inheritance distance” between Ai

and Pi , if Ai ≡ Pi then the distance is 1.

3. Add distances.

4. The method with the smallest distance is selected.

5. If several distances are identical, then a compile-time error

ambiguous call occurs.

15



Notes on overloading

• It is usually used when methods are non-ambiguous:

• A different arity.

• The parameters are not connected through inheritance.

• Otherwise, the programmer must manually execute the resolution

algorithm to be sure of which method is called.

• Therefore, you should use it carefully and keep it simple.

• Generally, the philosophy adopted by the Java librairies.

16



Exercise I

Don’t repeat yourself

Use a parent class Destructible extracting the common code in Monster

and Obstacle.

Solution

class Destructible {

protected double life = 100;

public void hit_me(double damage) { life = Math.max(0, life - damage); }

}

class Monster extends Destructible { /∗ ... ∗/}
class Obstacle extends Destructible { /∗ ... ∗/ }

17



Exercise I

Don’t repeat yourself

Use a parent class Destructible extracting the common code in Monster

and Obstacle.

Solution

class Destructible {

protected double life = 100;

public void hit_me(double damage) { life = Math.max(0, life - damage); }

}

class Monster extends Destructible { /∗ ... ∗/}
class Obstacle extends Destructible { /∗ ... ∗/ }

17



Exercise II

What is the method called, or the error, if for each object o declared

below, we write axe.attack(o)?

class Axe {

public void attack(Monster m) {} // (1)

public void attack(Obstacle o) {} // (2)

public void attack(Destructible d) {} // (3)

}

Destructible dmonster = new Monster();

Destructible dobstacle = new Obstacle();

Monster monster = new Monster();

Obstacle obstacle = new Obstacle();

18



Solution: Exercise II

Destructible dmonster = new Monster();

Destructible dobstacle = new Obstacle();

Monster monster = new Monster();

Obstacle obstacle = new Obstacle();

axe.attack(dmonster); // (3)

axe.attack(dobstacle); // (3)

axe.attack(monster); // (1)

axe.attack(obstacle); // (2)

Compile-time

Don’t forget that overloading only looks at the compile-time type!

19



Exercice III

What about these examples?

class Axe {

public void attack(Monster m, Obstacle o) {} // (1)

public void attack(Destructible d, Monster m) {} // (2)

public void attack(Monster m, Destructible d) {} // (3)

}

Destructible dmonster = new Monster();

Destructible dobstacle = new Obstacle();

Monster monster = new Monster();

Obstacle obstacle = new Obstacle();

axe.attack(monster, obstacle);

axe.attack(dobstacle, monster);

axe.attack(dobstacle, dmonster);

axe.attack(dmonster, dmonster);

axe.attack(monster, monster);

axe.attack(monster, dobstacle);

20



Solution: Exercise III

class Axe {

public void attack(Monster m, Obstacle o) {} // (1)

public void attack(Destructible d, Monster m) {} // (2)

public void attack(Monster m, Destructible d) {} // (3)

}

Destructible dmonster = new Monster();

Destructible dobstacle = new Obstacle();

Monster monster = new Monster();

Obstacle obstacle = new Obstacle();

axe.attack(monster, obstacle); // (1)

axe.attack(dobstacle, monster); // (2)

axe.attack(dobstacle, dmonster); // error: no such method

axe.attack(dmonster, dmonster); // error: no such method

axe.attack(monster, monster); // error: ambiguous call between

// (2) and (3)

axe.attack(monster, dobstacle); // (3)

21



What to remember of ad-hoc polymorphism?

• Called polymorphism because a method can have several forms (all

the methods with an identical name).

• Overloading mechanism allowing us to use a same name for different

implementations. However, these methods should be connected

semantically.

• The method called is chosen at compile-time (static-binding).

22


	Ad-hoc polymorphism (overloading)

