Programming Fundamentals 2

[]
Pierre Talbot ll Il I I II
°

23 March 2021 -
UNIVERSITE DU

University of Luxembourg LUXEMBOURG

Chapter VI. Casting Polymorphism

Casting of primitive types

Casting polymorphism

double price = 9.99;
int rounded_price = (int) price;
// rounded_price = ?

Casting
Casting is an operation allowing to convert a value from a type to a

value of another type. For instance, to view price as an int instead of a

double.

Recall from Chapter 2...

A type is a size s € N in bits and a pair of imaginary functions
f:{0,1}* - T and g: T — {0,1}%, such that T is the values you
manipulate in the program.

e For int: size = 32 bits, f,-,,t(02401000001) = 64,
e For float: size = 32 bits, f5,,:(0>#01000001) = 9.108...7%,
e For char: size = 16 bits, fcha,(0801000001) =A,

e For boolean: size = 1 bit, fpopiean(1) = true.

Bit-level Casting

We could just reinterpret the memory with the new type by changing the
function f:

e Let int x = 64; and float y = (float) x;.

e We could view this operation as:

(float)x = froat (Gint (X)) = frar(02401000001) = 9.108...~% = y.

However, we would normally expect the casting operation to give
y = 64.0 as a result.

Type-level Casting

e To reach the expected result, we introduce a casting function
cast : int — float.

e This function does not reinterpret the bits, but work at the level of
the type T.

e Therefore, we have cast(64) = 64.0.

e There are cast functions for each conversion (float — int,
char — int, ...).

Cast operations are partial functions

Some casting functions are partial functions (in theory):

e cast : float — int: 4.5 can't be converted to integer.
e cast : int — short: 100000 can't be converted to a short (too large).

In practice, they are some rules that make these functions total:

e cast : float — int: round towards 0, e.g.:
e cast(4.5) =4
o cast(—4.5)=—4
e cast(NaN) =0
e cast : int — short: truncate the extra bits, and simply use fsporr ON
the remaining bits:

1. gin:(100000) = 00000000 00000001 10000110 10100000,
2. fsort(10000110 10100000) = —31072

Implicit casting

To improve readability, many languages provide some automatic and
implicit type conversions.

e Generally implicit when no precision is lost, e.g., short x = 10;
int y = x.

e Sometimes implicit although precision might be lost, e.g., int to
float.

Some languages such as Rust, forbids implicit casts, and favor explicit
casts instead.

Casting of object types

Casting of object types

Following inheritance relationships, we can cast an object to a superclass
or subclass.

e Upcast (implicit): Cast an object of type T to an object of type U
such that T < U.

Weapon w = new Axe(); // The type Aze is upcasted to the type Weapon.

e Downcast: Cast an object of type T to an object of type U such
that T > U.

Axe a = (Axe) w; // The type Weapon is downcasted from the type Weapon to
the type Aze.

Downcast

Imagine the following code:

Weapon w = new Axe();

//

Hammer h = (Hammer) w; // oops!

e By downcasting, we cannot be sure that the runtime type of w is
actually a type Hammer, in contrast to upcasting where the
relationship can be verified at compile-time.

e In the previous example a ClassCastException is thrown.

Instanceof and getclass

When downcasting, you must always verify that the object you downcast
is of the expected type. Suppose T is the runtime type of x:

e x instanceof U evaluates to true if T < U.

e x.getClass() == U.class evaluates to true if T = U.
Example (Instanceof vs getclass)

class MithrilAxe extends Axe { ... }

/).

Weapon w = new MithrilAxe();

if (w instanceof Axe) { System.out.println("w is an axe or a subtype of Axe.\n"); }

else if(w instanceof Hammer) { System.out.println("w is a hammer or a subtype of Hammer.
/e

if (w.getClass() == Axe.class) { System.out.println("w is an Axe."); }

else if(w.getClass() == MithrilAxe.class) { System.out.println("w is a MithrilAxe."); }

Is downcast a bad practice?

e Downcast is not necessarily a bad practice, however it leads to a
more imperative programming style, and might indicate some issues
with your object-oriented design.

e Nevertheless, downcast is always required for very specific cases such
as overriding the method equals, see Chapter 7.

10

The expression problem

This simple discussion on downcast actually leads to a fundamental problem
called the expression problem*.

Extending data or operation?

e Casting polymorphism makes it easy to add new algorithms on existing

data, without modifying existing code.

e Subtype polymorphism makes it easy to add new data classes without
modifying existing algorithms.

It is best explained through an example: see Live Coding Session: Coding a
calculator!

We will see in Chapter 10 the visitor design pattern, an object-oriented pattern
that partially solves this problem.

lhttps://en.wikipedia.org/wiki/Expression_problem

https://en.wikipedia.org/wiki/Expression_problem

What to remember about casting polymorphism?

e We can transform a value to view it under various forms.

e This form of polymorphism is probably the most widespread across
languages (C, C++, Python, Javascript, ...).

e You must be careful to the specificities of each language. For

instance in C++, there are 4 different casting operators (static_cast
(type-level casting), reinterpret_cast (bit-level casting), ...).

e Expression problem: Tensions between data extension and
algorithmic extension, and casting polymorphism vs subtype
polymorphism.

12

