
Programming Fundamentals 2

Pierre Talbot

23 March 2021

University of Luxembourg



Chapter VI. Casting Polymorphism

0



Casting of primitive types

0



Casting polymorphism

double price = 9.99;

int rounded_price = (int) price;

// rounded price = ?

Casting

Casting is an operation allowing to convert a value from a type to a

value of another type. For instance, to view price as an int instead of a

double.

1



Recall from Chapter 2...

A type is a size s ∈ N in bits and a pair of imaginary functions

f : {0, 1}s → T and g : T → {0, 1}s , such that T is the values you

manipulate in the program.

Examples

• For int: size = 32 bits, fint(02401000001) = 64,

• For float: size = 32 bits, ffloat(02401000001) = 9.108 . . .−44,

• For char: size = 16 bits, fchar (0801000001) = A,

• For boolean: size = 1 bit, fboolean(1) = true.

2



Bit-level Casting

We could just reinterpret the memory with the new type by changing the

function f :

• Let int x = 64; and float y = (float) x;.

• We could view this operation as:

(float)x = ffloat(gint(x)) = ffloat(02401000001) = 9.108 . . .−44 = y.

However, we would normally expect the casting operation to give

y = 64.0 as a result.

3



Type-level Casting

• To reach the expected result, we introduce a casting function

cast : int → float.

• This function does not reinterpret the bits, but work at the level of

the type T .

• Therefore, we have cast(64) = 64.0.

• There are cast functions for each conversion (float → int,

char → int, . . . ).

4



Cast operations are partial functions

Some casting functions are partial functions (in theory):

• cast : float → int: 4.5 can’t be converted to integer.

• cast : int → short: 100000 can’t be converted to a short (too large).

• ...

In practice, they are some rules that make these functions total:

• cast : float → int: round towards 0, e.g.:

• cast(4.5) = 4

• cast(−4.5) = −4

• cast(NaN) = 0

• cast : int → short: truncate the extra bits, and simply use fshort on

the remaining bits:

1. gint(100000) = 00000000 00000001 10000110 10100000,

2. fshort(10000110 10100000) = −31072

5



Implicit casting

To improve readability, many languages provide some automatic and

implicit type conversions.

• Generally implicit when no precision is lost, e.g., short x = 10;

int y = x.

• Sometimes implicit although precision might be lost, e.g., int to

float.

Some languages such as Rust, forbids implicit casts, and favor explicit

casts instead.

6



Casting of object types

6



Casting of object types

Following inheritance relationships, we can cast an object to a superclass

or subclass.

• Upcast (implicit): Cast an object of type T to an object of type U

such that T ≤ U.

Weapon w = new Axe(); // The type Axe is upcasted to the type Weapon.

• Downcast: Cast an object of type T to an object of type U such

that T > U.

Axe a = (Axe) w; // The type Weapon is downcasted from the type Weapon to

the type Axe.

7



Downcast

Imagine the following code:

Weapon w = new Axe();

// ...

Hammer h = (Hammer) w; // oops!

• By downcasting, we cannot be sure that the runtime type of w is

actually a type Hammer, in contrast to upcasting where the

relationship can be verified at compile-time.

• In the previous example a ClassCastException is thrown.

8



Instanceof and getclass

When downcasting, you must always verify that the object you downcast

is of the expected type. Suppose T is the runtime type of x :

• x instanceof U evaluates to true if T ≤ U.

• x.getClass() == U.class evaluates to true if T = U.

Example (Instanceof vs getclass)

class MithrilAxe extends Axe { ... }

//...

Weapon w = new MithrilAxe();

if(w instanceof Axe) { System.out.println("w is an axe or a subtype of Axe.\n"); }

else if(w instanceof Hammer) { System.out.println("w is a hammer or a subtype of Hammer.\n"); }

// ...

if(w.getClass() == Axe.class) { System.out.println("w is an Axe."); }

else if(w.getClass() == MithrilAxe.class) { System.out.println("w is a MithrilAxe."); }

9



Is downcast a bad practice?

• Downcast is not necessarily a bad practice, however it leads to a

more imperative programming style, and might indicate some issues

with your object-oriented design.

• Nevertheless, downcast is always required for very specific cases such

as overriding the method equals, see Chapter 7.

10



The expression problem

This simple discussion on downcast actually leads to a fundamental problem

called the expression problem1.

Extending data or operation?

• Casting polymorphism makes it easy to add new algorithms on existing

data, without modifying existing code.

• Subtype polymorphism makes it easy to add new data classes without

modifying existing algorithms.

It is best explained through an example: see Live Coding Session: Coding a

calculator!

We will see in Chapter 10 the visitor design pattern, an object-oriented pattern

that partially solves this problem.

1https://en.wikipedia.org/wiki/Expression_problem

11

https://en.wikipedia.org/wiki/Expression_problem


What to remember about casting polymorphism?

• We can transform a value to view it under various forms.

• This form of polymorphism is probably the most widespread across

languages (C, C++, Python, Javascript, . . . ).

• You must be careful to the specificities of each language. For

instance in C++, there are 4 different casting operators (static_cast

(type-level casting), reinterpret_cast (bit-level casting), . . . ).

• Expression problem: Tensions between data extension and

algorithmic extension, and casting polymorphism vs subtype

polymorphism.

12


